Helmut Behrens und Hachiro Wakamatsu

Zur Kenntnis der Chemie der Metallcarbonyle und der Cyanokomplexe in flüssigem Ammoniak, XVI¹⁾

Die Reaktion der Kobaltcarbonyle mit flüssigem Ammoniak 2)

Aus dem Institut für Anorganische Chemie der Universität Erlangen-Nürnberg und dem Anorganisch-Chemischen Laboratorium der Technischen Hochschule München

(Eingegangen am 19. März 1966)

Co₂(CO)₈ und Co₄(CO)₁₂ disproportionieren in flüssigem NH₃ zu [Co^{+II}(NH₃)₆][Co^{-I}(CO)₄]₂. Das bei den Reaktionen eliminierte CO wird teils gasförmig freigesetzt, teils reduziert es noch vorhandenes Carbonyl zu Tetracarbonylcobaltat(-I), NH₄[Co^{-I}(CO)₄], unter gleichzeitiger Bildung von CO(NH₂)₂.

Fe(CO)₅ und Fe₂(CO)₉ werden in flüssigem NH₃ bei Raumtemperatur zu (NH₄)₂[Fe(CO)₄] bzw. (NH₄)₂[Fe₂(CO)₈] reduziert³), wobei eine CO-Molekel zu Harnstoff oxydiert wird. Im Gegensatz hierzu disproportioniert Fe₃(CO)₁₂ zunächst in [Fe(NH₃)₆][Fe₃(CO)₁₁], das sich sekundär mit dem eliminierten CO zu [Fe(NH₃)₆][Fe₂(CO)₈] und Fe(CO)₅ umsetzt. Letzteres reagiert dann mit CO und NH₃ zu (NH₄)₂[Fe(CO)₄] und CO(NH₂)₂.

Nach *Hieber* und Mitarbb.⁴⁾ setzen sich die beiden Carbonyle des Kobalts mit N- und O-Basen unter Valenzdisproportionierung des Metalls und Abgabe von CO nach den Gleichungen (1) und (2) um:

$$3 \text{ Co}_2(\text{CO})_8 + 2 \text{ nB} \longrightarrow 2 [\text{Co}(\text{B})_n][\text{Co}(\text{CO})_4]_2 + 8 \text{ CO}$$
 (1)

$$3 \text{ Co}_4(\text{CO})_{12} + 4 \text{ nB} \longrightarrow 4 [\text{Co}(B)_n][\text{Co}(\text{CO})_4]_2 + 4 \text{ CO}$$
 (2)
(B = N- bzw. O-Basen; i. allg. n = 6)

So konnte bei der Umsetzung von Co₂(CO)₈ mit konzentriertem wäßrigem Ammoniak⁵⁾ die quantitative Bildung von orangefarbenem [Co(NH₃)₆][Co(CO)₄]₂ nachgewiesen werden. Die gleiche Verbindung entsteht mit gasförmigem NH₃⁶⁾. Versuche über das Verhalten von Co₄(CO)₁₂ gegenüber wäßrigem und gasförmigem NH₃ liegen bisher nicht vor.

Nach Behrens und Weber⁷⁾ spielen sich bei den Reaktionen von Co₂(CO)₈ und Co₄(CO)₁₂ mit flüssigem NH₃ unterhalb von dessen Siedepunkt zwar ebenfalls Valenzdisproportionierungen ab (3), (4),

3) H. Behrens und H. Wakamatsu, Z. anorg. allg. Chem. 320, 30 (1963).

¹⁾ XV. Mitteil.: H. Behrens, E. Lindner und J. Rosenfelder, Chem. Ber. 99, 2745 (1966), vorstehend.

²⁾ Über Teilergebnisse dieser Arbeit wurde bereits anläßlich der "Seventh International Conference on Coordination Chemistry", Stockholm und Uppsala, Juni 1962, berichtet.

⁴⁾ W. Hieber, W. Beck und G. Braun, Angew. Chem. 72, 795 (1960) und die dort zitierte Literatur.

⁵⁾ W. Hieber, J. Sedlmeier und W. Abeck, Chem. Ber. 86, 700 (1953).

⁶⁾ W. Hieber und H. Schulten, Z. anorg. allg. Chem. 232, 17 (1937).

⁷⁾ H. Behrens und R. Weber, Z. anorg. allg. Chem. 281, 190 (1955).

jedoch werden die zu erwartenden CO-Volumina von 2.67 Mol CO/Mol Co₂(CO)₈ bzw. 1.33 Mol CO/Mol Co₄(CO)₁₂ nicht gefunden (nur ca. 10 bzw. 0% CO konnten abgepumpt werden). Hieraus wurde seinerzeit geschlossen, daß das nicht gasförmig auftretende CO mit dem flüssigen NH3 zu Formamid reagiert. Gleichzeitig ließen sich beim Erwärmen der erhaltenen Reaktionsprodukte auf 60° erhebliche Mengen NH₄[Co(CO)₄] absublimieren. Da Säureamide im Ammonosystem säureanalog fungieren, schien die Bildung von NH₄[Co(CO)₄] eine Stütze dafür zu sein, daß tatsächlich Formamid bei der Reaktion des eliminierten CO mit flüssigem NH3 entsteht.

Auf Grund der bei den Umsetzungen der Eisencarbonyle mit flüssigem NH3 gefundenen Tatsachen erscheint es notwendig, die Reaktionen der beiden Kobaltcarbonyle mit flüssigem NH3 bei Raumtemperatur erneut unter dem Gesichtspunkt zu untersuchen, wie weit die Bildung von nachgewiesenem NH₄[Co(CO)₄] an die gleichzeitige Bildung von Harnstoff gekoppelt ist. Tatsächlich ist es möglich, bei den Umsetzungen beider Carbonyle mit flüssigem NH₃ Harnstoff in den Reaktionsprodukten nachzuweisen, der sich mit Xanthydrol leicht als Dixanthylharnstoff abtrennen läßt³⁾. Allerdings spielt im Falle des CO-ärmeren Co₄(CO)₁₂ die Bildung von NH₄[Co(CO)₄] und CO(NH₂)₂, wie aus der folgenden Übersicht hervorgeht, nur eine untergeordnete Rolle.

Reaktion von Co₂(CO)₈ und Co₄(CO)₁₂ mit flüssigem Ammoniak

Quantitative Versuche ergaben, daß etwa 52% des eingesetzten Co₂(CO)₈ im Sinne von Gl. (5), die restlichen 48 % nach Gl. (6) umgesetzt werden.

$$3 \text{ Co}_{3}^{0}(\text{CO})_{8} + 12 \text{ NH}_{3} \xrightarrow{20^{\circ}} 2 [\text{Co}^{+\text{II}}(\text{NH}_{3})_{6}][\text{Co}^{-\text{I}}(\text{CO})_{4}]_{2} + 8 \text{ CO}$$
 (5)

$$\text{Co}_{2}^{0}(\text{CO})_{8} + \text{CO} + 4 \text{ NH}_{3} \xrightarrow{20^{\circ}} 2 \text{ NH}_{4}[\text{Co}^{-\text{I}}(\text{CO})_{4}] + \text{CO}(\text{NH}_{2})_{2}$$
 (6)

$$3 \text{ Co}_{4}^{0}(\text{CO})_{12} + 24 \text{ NH}_{3} \xrightarrow{20^{\circ}} 4 [\text{Co}^{+\text{II}}(\text{NH}_{3})_{6}][\text{Co}^{-\text{I}}(\text{CO})_{4}]_{2} + 4 \text{ CO}$$
 (7)

$$3 \text{ Co}_{2}^{0}(\text{CO})_{8} + 12 \text{ NH}_{3} \xrightarrow{20^{\circ}} 2 [\text{Co}^{+\text{II}}(\text{NH}_{3})_{6}][\text{Co}^{-\text{I}}(\text{CO})_{4}]_{2} + 8 \text{ CO}$$
(5)
$$\text{Co}_{2}^{0}(\text{CO})_{8} + \text{CO} + 4 \text{ NH}_{3} \xrightarrow{20^{\circ}} 2 \text{ NH}_{4}[\text{Co}^{-\text{I}}(\text{CO})_{4}] + \text{CO}(\text{NH}_{2})_{2}$$
(6)
$$3 \text{ Co}_{4}^{0}(\text{CO})_{12} + 24 \text{ NH}_{3} \xrightarrow{20^{\circ}} 4 [\text{Co}^{+\text{II}}(\text{NH}_{3})_{6}][\text{Co}^{-\text{I}}(\text{CO})_{4}]_{2} + 4 \text{ CO}$$
(7)
$$\frac{1}{2} \text{ Co}_{4}^{0}(\text{CO})_{12} + 3 \text{ CO} + 4 \text{ NH}_{3} \xrightarrow{20^{\circ}} 2 \text{ NH}_{4}[\text{Co}^{-\text{I}}(\text{CO})_{4}] + \text{CO}(\text{NH}_{2})_{2}$$
(8)

Beim CO-ärmeren Co₄(CO)₁₂ disproportionieren etwa 94% des eingesetzten Carbonyls nach Gl. (7), während nur ca. 6% zu NH₄[Co(CO)₄] reduziert werden (Gl. (8)).

Analytisch konnte festgestellt werden, daß sich die nach Gl. (6) gebildeten Mengen NH₄[Co(CO)₄] und Harnstoff tatsächlich wie 2:1 verhalten. Bei Umsetzung beider Carbonyle wird auch noch gasförmiges CO gefunden. Allerdings zeigt die Gesamt-CO-Bilanz unter Einbeziehung der jeweils gebildeten Mengen Harnstoff in beiden Fällen ein Defizit, was wohl nur durch eine Carbonylierung von NH₃ zu Formamid zu erklären ist. Dies würde auch mit Versuchen von Sternberg und Mitarbb.8) an Co₂(CO)₈ und Dimethylamin übereinstimmen. Das Carbonyl disproportioniert hierbei in gewohnter Weise, wobei das zu erwartende CO zu ca. 90% in HCON(CH₃)₂ und ca. 10% in CO[N(CH₃)₂]₂ übergeführt wird. Für die Bildung von Harnstoffderivaten konnten die genannten Autoren allerdings keine eindeutige Erklärung geben; doch dürfte die Bildung des Tetramethylharnstoffs grundsätzlich in der gleichen Weise erfolgen wie die des Harnstoffs bei der Reaktion von Co₂(CO)₈ mit flüssigem NH₃.

⁸⁾ H. W. Sternberg, I. Wender, R. A. Friedel und M. Orchin, J. Amer. chem. Soc. 75, 3148 (1953).

Im übrigen ist — wie früher bei den Reaktionen von Fe(CO)₅ und Fe₂(CO)₉ mit flüssigem NH₃ beschrieben — auch die Umsetzung von Co₂(CO)₈ mit flüssigem NH₃ in jeder Hinsicht mit der "Basenreaktion" von Co₂(CO)₈ im wäßrig-alkalischen System vergleichbar. Bei dieser konnten bekanntlich *Hieber* und Mitarbb. ⁵⁾ nachweisen, daß primär eine Disproportionierung in Co^{2⊕} und [Co(CO)₄][⊕] erfolgt, wobei das hierbei freiwerdende CO quantitativ zur weiteren Reduktion von noch vorhandenem Co₂(CO)₈ zu [Co(CO)₄][⊕] unter gleichzeitiger Bildung von CO₃^{2⊕} verbraucht wird.

Der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie, Fonds der Chemischen Industrie, sind wir für die wertvolle Unterstützung unserer Arbeiten zu großem Dank verpflichtet. Ebenso danken wir der Firma Ajinomoto Co. Inc., Japan, für den H. W. gewährten längeren Studienaufenthalt an der T. H. München.

Beschreibung der Versuche

Die Umsetzungen der beiden Kobaltcarbonyle Co₂(CO)₈ und Co₄(CO)₁₂ in flüssigem NH₃ werden in Einschlußrohren nach der bereits beschriebenen Arbeitsmethodik durchgeführt³⁾.

Harnstoff wurde mit einer 10-proz. methanolischen Xanthydrollösung als Dixanthylharnstoff bestimmt, der direkt ausgewogen und durch N_2 -Analyse (ber. 6.66% N) kontrolliert wurde.

Umsetzung von $Co_2(CO)_8$ mit flüss. NH_3 : Zur Ermittlung der gebildeten Anteile von $NH_4[Co(CO)_4]$ und $CO(NH_2)_2$ werden 697.8 mg $Co_2(CO)_8$ (2.04 mMol) 40 Stdn. mit 12 ccm flüss. NH_3 bei 20° umgesetzt. Die erhaltenen Reaktionsprodukte werden nach Abdampfen von NH_3 auf 50° i. Hochvak. erwärmt, wobei das gebildete $NH_4[Co(CO)_4]$ quantitativ in eine vorgelegte Falle übersublimiert *). Dieses wird mit alkalischem Wasserstoffperoxid zersetzt und anschließend Kobalt mit α -Nitroso- β -naphthol bestimmt. Gef. 1.88 mMol $NH_4[Co(CO)_4]$ (nach Gl. (6) 46% des eingesetzten $Co_2(CO)_8$). Der Sublimationsrückstand wird nach Zugabe von Essigsäure an der Luft oxydiert; im Filtrat wird $CO(NH_2)_2$ als Dixanthylharnstoff quantitativ bestimmt. Gef. 0.98 mMol $CO(NH_2)_2$. Somit verhalten sich $NH_4[Co(CO)_4]$: $CO(NH_2)_2$ wie 1.92:1 (ber. 2:1).

Ergebnis der Gasanalyse⁹⁾: Gef. 0.97 mMol CO, entspr. 0.48 Mol/Mol Co₂(CO)₈.

Zur Charakterisierung von gebildetem $[Co(NH_3)_6][Co(CO)_4]_2$ werden 735.1 mg $Co_2(CO)_8$ (2.15 mMol) mit flüss. NH_3 bei 20° 40 Stdn. umgesetzt. Der erhaltene Rückstand wird mit Wasser aufgenommen und das kationische Kobalt mit Na₂S als CoS ausgefällt (0.753 mg-Ion $Co^{2\oplus}$). Aus $[Co(NH_3)_6][Co(CO)_4]_2$ und $NH_4[Co(CO)_4]$ werden mit $[Ni(phen)_3]Cl_2$ 3.55 mg-Ion $[Co(CO)_4]^{\oplus}$ als $[Ni(phen)_3][Co(CO)_4]_2$ gefunden.

Die Harnstoffanalyse mit Xanthydrol ergibt 1.04 mMol $CO(NH_2)_2$, was 2.08 mMol NH₄[Co(CO)₄] entspricht. Somit entsprechen dem Anteil an [Co(NH₃)₆][Co(CO)₄]₂ 3.55 -- 2.08 = 1.47 mg-Ion [Co(CO)₄]^{\ominus}. Es verhalten sich daher Co^{2 \ominus}: [Co(CO)₄]^{\ominus} wie 1:1.95 (ber. 1:2).

Von dem eingesetzten Co₂(CO)₈ haben somit ca. 52% zu [Co(NH₃)₆][Co(CO)₄]₂ reagiert. Ergebnis der Gasanalyse⁹): Gef. 1.05 mMol CO, entspr. 0.489 Mol/Mol Co₂(CO)₈.

^{*)} NH₄[Co(CO)₄] ist in flüss. NH₃ ausgezeichnet löslich und in diesem Medium im Gegensatz zu (NH₄)₂[Fe(CO)₄] bis 120° stabil.

⁹⁾ Das freigesetzte CO wird nach Ausfrieren des flüss. NH₃ abgepumpt und durch Absorption mit einer ammoniakal. CuCl-Lösung bestimmt,

Umsetzung von $Co_4(CO)_{12}$ mit flüss. NH_3 : 668.5 mg $Co_4(CO)_{12}$ (1.17 mMol) werden bei 20° 40 Stdn. mit flüss. NH_3 umgesetzt, das kationische Kobalt, wie beschrieben, mit Na₂S, das gesamte $[Co(CO)_4]^{\odot}$ (aus $[Co(NH_3)_6][Co(CO)_4]_2$ und $NH_4[Co(CO)_4]$) als $[Ni(phen)_3][Co(CO)_4]_2$ ausgefällt und der gebildete Harnstoff in der üblichen Weise bestimmt.

Gef. 1.50 mg-Ion Co^{2 \oplus}; 3.16 mg-Ion [Co(CO)₄] \ominus ; 0.06 mMol CO(NH₂)₂. Co^{2 \oplus}: [Co(CO)₄] \ominus = 1 : 2.02 (ber. 1 : 2).

Von dem eingesetzten Co₄(CO)₁₂ werden 94% zu [Co(NH₃)₆][Co(CO)₄]₂ umgesetzt.

Ergebnis der Gasanalyse⁹⁾: 0.56 mMol CO, entspr. 0.48 Mol/Mol Co₄(CO)₁₂.

[118/66]